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Abstract

The average conformation properties, such as the a priori probability P, and the segmental orientation function (P,({)) of polymethylene
chains with chain length from N = 13 to N = 21 are investigated by enumeration calculation method based on the rotational-isomeric state
(RIS) model. Here non-local interactions of L—J potential are also considered. In the process of tensile deformation, the a priori probability P,
increases with elongation ratio A, meanwhile the a priori probability P,+ (or P,-) decreases with elongation ratio A, and it leads the average
energy per bond to decrease. The segmental orientation distribution function (P,({)) of short deformed polymethylene chains may be
expressed in the form of

PrONN =X H=a® =2 +b
where a and b only depend on PM chain length. Many conformations will vanish in the process of deformation. We also investigate the

probability density distribution function of gyration radius P(S). For a given chain length, the maximum of P(S) increase with A, and the
distributed region of P(S) becomes smaller for large A. Some comparisons with Flory—Fisk function of P(S) are also made. Our calculations

may provide some insights into the rubber-like elasticity. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problems of rubber-like elasticity are of considerable
academic and applied interest. The elastic behavior
exhibited by a polymer network upon moderate macro-
scopic deformation can be attributed to the deformation,
and associated reduction in entropy, of the individual
molecular chains connecting the network junction points.
In the range of the statistics, most molecular theories of
this ‘rubber-like’ elasticity employ the Gaussian distribution
function for the required probabilities and end-to-end
separation of a network chain [1,2]. But this theory does
not adequately take into account the significant conforma-
tional differences known to exist among different types of
polymeric chains [3]. Later, non-Gaussian theories have
also been developed [2,4—6], but the ones currently
available generally have the disadvantage of containing
parameters which can be determined only by comparisons

* Corresponding author.
E-mail address: zhanglx@mail.hz.zj.cn (L. Zhang).

between theory and experiment. Flory and Abe put forward
the rotational-isomeric state (RIS) theory based on the
effects of elongation of a polymer chain on the apportion-
ment of its bonds and bond sequences among various RIS
[7]. The approach taken in the present investigation avoids
the shortcoming of non-Gaussian theories by utilizing the
wealth of information, which RIS theory provides on the
spatial configurations of chain molecules [3], including
most of those used in elastomeric networks. Curro and
Mark improved a non-Gaussian theory of rubber-like
elasticity based on RIS simulations of network chain config-
urations and investigated the rubber-like elasticity from the
distribution functions for the end-to-end separation 7 of the
chains using Monte Carlo (MC) method [8]. In some cases,
non-Gaussian functions W(r) are provided by analytical
theories, in other cases can be deduced from the MC
sampling of the chain configurations [2,9—15]. The MC
network model of Stepto and Taylor is based on detailed
molecular representations of network-chain structures
[16,17], and also addresses the problem of chains in a
rubbery network becoming fully extended. Chains are
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deformed individually and maximum chain extension is
restricted, consistent with W(r) = 0, where W(r) is the
network-chain radial end-to-end distance distribution,
generated using an RIS chain model. The other classical
model is phantom network. This theory explains rubber
elasticity in terms of the change of chain entropy when a
polymer network is deformed [18,19]. But the theory
ignores interactions between chains and assumes that the
only influence on the configuration of a chain is the position
of its end points. The theory also makes predictions regard-
ing chain orientation [19,20]. Flory and Erman introduced
the impede fluctuations of the junctions in the theory of
elasticity of polymer networks. Effects of dilation by
swelling on the stress—strain relationship are reproduced
by the same set of parameters [21,22]. The other develop-
ment of elasticity theory is tube model of de Gennes and
Edwards who discussed possible motions for one polymer
molecule performing wormlike displacements inside a
strongly cross-linked polymeric gel G [23].

Although the molecular origin of the elastic force in a
rubber-like material has been acknowledged, the relationship
between the macroscopic deformation and its molecular
structure is not yet fully understood. The thermodynamics
properties of rubber-like elasticity haven’t been investigated
in detail, and the energy changes in the deformation process
haven’t been considered, either. In fact, the energy
contribution to elasticity is very important and cannot be
ignored. Xiaozhen and Xiaofeng proposed a conformational
elasticity theory based on the RIS model and discussed
the elasticity behaviors of poly(cis-1,4-isoprene) and
poly(trans-1,4-isoprene)chains in terms of the chemical
structure [24]. We also investigated the elastic behaviors
of short PM chains using enumeration calculation method
[25], and the elastic behaviors of long PM chains using MC
simulation method [26]. The results are close to the experi-
mental data. In this paper, we will investigate the average
conformation of short PM chains in the process of deforma-
tion using the RIS model and the enumeration calculation
method.

2. Method of calculation

The RIS model used to parameterize the PM chain

structures was that of Abe, Jernigan and Flory [27]. The
geometric parameters are C—C bond length I =
0.153 nm and C—C-C bond angle is 112°. The rotational
states are located at @, = 0, and ¢gi = *112.5° respec-
tively. The statistical weight matrix of PM chain is

U=1]|1 o oo (1)

where o =-exp(—E,/RT) and o = exp(—E,/RT). The
energy parameters for local interaction are E, =
1674Jmol™! and E,=6276Tmol” ! [28]. We also
consider the non-local interactions in our calculation, and
the L—-J potential is adopted [28],

i r* 12 r* 6
E(r) = 4¢& (—) —(—) (2)
r r

where the values of & and r* are 603.2Jmol ' and
0.3264 nm, respectively [28].

When a force f acts on a PM chain, the atoms in a
polymer chain move r distance along the force direction,
at the same time, the atoms are compressed and drawn back
r' in the vertical of the force direction. In the process of
tensile deformation, many conformations would vanish. If
the force f = 0, this is the isolated chain, and we assume
that the minimum of end-to-end distance is r,;,. If the force
f # 0, the minimum of end-to-end distance of the elongated
direction becomes r;, + r (see Fig. 1). For simplicity, the
minimum of end-to-end distance r,,;, equals to 0. If the force
f acts on the chain in the direction of X-axis, the partition
function of the system becomes

Zy(r) = > exp(—E/RT) 3)

where Y ; is the sum of the conformations whose X-axis
component of end-to-end distance is greater than r, mean-
while the Y-axis and Z-axis components of end-to-end
distance are less than ry ., — ' and rz . — 1, respec-
tively. The elongation ratio A, and the compress ratio A
are obtained from the root-mean-square of end-to-end

(a)

(b)

Fig. 1. Conformations of an isolated chain (a) and of a chain with a force acting on (b).
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Fig. 2. The a priori probability Pg, vs. elongation ratio A of PM chains with 13 bonds and 21 bonds at 7" = 423 K. Here P, (®), P,=, (W), and P=,= (V) are for

21-bond chain; and Py(O), P+, (O), Py+,= (V) for 13-bond chain.

distance (R*){* of PM chain without deformation
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Thus, the partition function Z(r) depends on A, and A.. Here
we assume the case of simple elongation, i.e. Ay = A,, Ay =
A=A =2 0r Ay =A, Ay =A,=A = or
A=A, Ay =Ay = A 12 — A.. Therefore, the statistic
properties of PM chains are taken as an average over three
cases.

1
2n=3 2 Zun (5)

a=X,Y,Z

3. Results and discussion
3.1. Average conformation

In the process of tensile deformation, many conforma-
tional properties of polymers may be changed. For example,
the conformations whose X-axis component of end-to-end
distance is less than r and whose Y-axis and Z-axis compo-
nents of end-to-end distance are greater than ry ., — r’ and
TZmax — r' will vanish, and the partition functions will
decrease. For PM chains, the elastic force increases and so
do the average dimensions during the process of deforma-
tion [25]. In fact, the average conformations are also
changed. Here we discuss those properties.

We define the a priori probability Py, as

—E,/RT
Z Pén,i e

Py = l Ze—E[/RT (©6)

where P, ; is the probability when the i and i + 1 bonds are

in paired state £ and m, and > ; is the sum of the conforma-
tions without vanishing. The state £ orymaybet,g*, org".

We calculate the a priori probability Pg, of PM chains
with chain length from 13 to 21 bonds at the various elonga-
tion ratios, and the results are shown in Fig. 2. P+ (or Py-()
is almost constant during the tensile deformation, and the
trends are the same for the different chain lengths. Py
increases slowly in the region of small A, and increases
obviously when A > 1.9, especially for short PM chain.
At the same time, P;; of 13-bond PM chain is greater than
that of 21-bond PM chain. The value of Py+g+ (01 Py-o-) is
nearly unchanged in A < 1.9, and decreases in the large
scale of A, especially for 13-bond PM chain.

We also conclude the a priori possibility P of state &,
defined by

Pe= > Py (7

n=tg*.g”

Fig. 3(a) and (b) shows the relationship between P and the
elongation ratio A. We find the probability P, increases
immensely and P,+ (or P,-) decreases with the elongation
ratio A. Compared to P, the change of P,+ is more
inconspicuous, especially for small elongation ratio A. For
example, P, without elongation (A= 1.0) is 0.53 and
becomes 0.72 at A = 2.4. For P+, the value ranges from
0.24 to 0.14. The microstructures will influence the macro-
scopical properties. For example, if the first-order inter-
action approximation is considered only, the average
energy per bond can be obtained by

<E> == EtP[ + Eg+Pg+ + Eg—Pg— (8)

where E, =0, E,- = 1674 J/mol”', and P~ = P,. This
leads the average energy per bond to decrease, and the
energy contribution to force is negative, which is in
agreement with the experimental results [25]. The average
conformation properties of polymer molecules play
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Fig. 3. The a priori probability P; vs. elongation ratio A of PM chains with
13 bonds and 21 bonds at 7 = 423 K. (a) (®) is P, for 21-bond chain, and
(O) for 13-bond chain; (b) (V) is Py+ for 21-bond chain, and (V) for 13-
bond chain.

important roles in the interpretation of many aspects of
polymer behavior.

3.2. Density distribution function P(S) of the PM chains

Many properties of polymers rely heavily on some
knowledge of the average and the distribution of molecular
dimensions of polymers. Here we discuss the density
distribution function of gyration radius P(S). If Z(r) is the
partition function defined by Eq. (5), £,,(S) is

AOESI R ©)

l‘/

where Y is the sum of the Boltzman factor whose gyration
radius lies between S and S + AS, we have

S+ AS B fn(S)
L P as =2 (10)

If Z(r) is large enough, AS small enough, and P(S) decreases
or increases monotonously, the left of Eq. (10) may also be
written [29]

S+ AS
J' P(S)dS = P(S + E)AS (11)
S 2
thus
ASY\ _ fu(S)
P<S+ 7) = 207 AS (12)

Simulations are carried out for PM chains with chain length
from N=13 to N=21 and A=1.0, 1.5, and 2.0. We
calculate the probability density distribution function P(S)
using Eq. (12). Here AS is equal to 0.05(S*"* in our calcu-
lation. The results are shown in Fig. 4(a) and (b). Fig. 4(a) is
the case of 13-bond PM chain and Fig. 4(b) is of 21-bond
PM chain. The values of S/{S*)"* with the maximum prob-
ability density of P(S) become small during the process of
deformation. We also conclude that the shape of curves
becomes higher and narrower with the elongation ratio
increasing and the trend is much more notable in long chains
relative to short ones. On the other hand, in the large scale of
the abscissa (SAS®)'") (for example SASH'? > 1.15), P(S)
decreases with the elongation ratio A. For example, in
Fig. 4(a), P(S) decreases from 0.42 for A = 1.0 to 0.05 for
A=2.0 at the S/{SHY? =1.20. It makes clear that the
conformations at the large scale of S vanish faster than
that at the small ones in the process of elongation. The
reason may be that the root-mean-square of radius of gyra-
tion (Sz)”2 increases in the process of deformation and the
value of S is completely different at the same abscissa for
different A. At the same time, the changes of the gyration
radius and the end-to-end distance do not synchronize. It is
important that the conformations with large end-to-end
distance may have small gyration radius, and small contri-
bution to the sum of the Boltzman factor, defined by Eq. (9).
For the case of 21-bond PM chain without elongation (A =
1.0), we find that the values of P(S) is almost the same in the
range of S/($*)'? = 0.80 to SKS*)? = 1.15 [29]. For the
Gaussian chains, Flory and Fisk used the empirical rela-
tionship given by Eq. (13) to represent the probability
function P(S) [30]

P(S) = AS® exp(—3.55°KS%)) (13)

where A represents a constant. In Fig. 4(b), we also plot
P(S) according to Eq. (13) as a function of SAS*"* for
the cases of A=1.0 and A =2.0, and there exists
deviations between our simulation results and Flory
and Fisk’s function. Contrary to our calculations, the
maximum value of P(S) of Flory and Fisk’s function
decreases with elongation. The reason is that the
mean-square of radius gyration decreases with A.
Those calculations may provide some insights into the
microscopic of rubber-like elasticity.
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Fig. 4. Probability density distribution function P(S) vs. SKS*)'*> under
various elongation ratio of PM chain with 13-bond (a) and 21-bond (b) at
T = 423 K. Here (@), (+), and (A) represent A = 1.0, 1.5, and 2.0, respec-
tively. The dot and solid lines are Flory—Fisk functions for 21-bond PM
chain with A = 1.0 and 2.0, respectively.

3.3. Orientation distribution function P,({) of deformed PM
chain

More recent investigations show the segmental orienta-
tion is very important. Segmental orientation is relative to
the statistical properties of polymer chains and it can be
measured directly by using techniques such as NMR and
infrared dichroism [31-33]. Recently, Taylor and Stepto
used the MC method to interpret the orientation of
PM networks in uniaxial deformation [34,35]. But
they haven’t considered the effects of chain length
and the non-local interactions on segmental orientation.
Here we deal with the orientation of short PM chains
using the RIS model.

The segmental orientation is defined by Legendre
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Fig. 5. The values of (P,(O))Y(A> — A1) vs. (A> = A™") of PM chain at T =
423 K. Here (@), (W), and (V) represent chains of 21, 17, and 13 bonds,
respectively.

polynomial, and there is

(PAO) = <%(3 cos?t - 1)>

D %(3 cos’{ — Dexp(—Ei/RT)

= 14
Z exp(—E;/RT) 19

where Y'; is the sum of the conformations without vanish-
ing. { is the effective angle between a segment vector and
the strain direction. We calculated the value of (P,({)) of
short PM chains with chain length from N = 13 to N = 21
using Eq. (14) at various elongation ratio A (A from 1.00 to
2.45), and the results are given in Fig. 5. In Fig. 5, we find
that (P,())/(A* — A~') may be expressed in the form of

PrOYN — A H=a —AH+b (15)

and the coefficients a and b only depend on PM chain length
N. With increasing N, a and b decreases slowly (see Fig. 6).
Roe and Krigbaum made the assumption that the chains of N
bonds can be replaced by freely jointed (Gaussian) chains
consisting of m links and (P,({)) can be determined
analytically as a function of deformation [20]. The Roe
and Krigbaum’s expression is

@) = (5 ) =2+ (551

XA+ M3 — 4172 3) + - (16)

In Eq. (16), if m is large enough, 1/25m*> — 0, this means
that 1/25m*(A* + A3 — 4A™2/3) may be ignored. Therefore,
the segmental orientation {P,({)) becomes linear with (A* —
/\_l) [34,35]. Here we only discuss the case of short PM
chain considering excluded volume, (1/25}712)()\4 + N3 —
4\"?/3) can not be ignored, and have a complex relationship
with elongation ratio A. Our calculations show that the Kuhn
and Griin model for the elasticity behaviors of rubbery
network is not realistic and is very misleading in terms of
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Fig. 6. The values of a (@) and b (W) vs. N for PM chain at 7 = 423 K.

physical understanding [36], and the segmental orientation
of short PM chains are different from the Gaussian chains.
The molecular orientation of long PM chains with consider-
ing non-local interactions and excluded volume will be
discussed using MC method in the future.
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